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Local similarity solutions and their limitations 
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(Received 15 March 1979) 

Two problems exhibiting breakdown in local similarity solutions are discussed, and 
the appropriate asymptotic form of the exact solution is determined in each case. The 
first problem is the very elementary problem of pressure driven flow along a duct 
whose cross-section has a sharp corner of angle 2a. When 201 < in, a local similarity 
solution is valid, whereas, when 2a > &n, the solution near the corner depends on the 
global geometry of the cross-section. The transitional behaviour when 2a = +T is 
determined. 

The second problem concerns low-Reynolds-number flow in the wedge-shaped 
region 101 < a when either a normal velocity proportional to distance from the vertex 
is imposed on both boundaries, or a finite flux 2Q is introduced or extracted at  the 
vertex (the Jeffery-Hamel problem). It is shown that the similarity solution in either 
cam is valid only when 2a < 2a0 x 257.5"; a modified problem is solved exactly 
revealing the behaviour when a > ac, and the transitional behaviour when a = a, 
(when the similarity solutions become infinite everywhere). An interesting conclusion 
for the Jeffery-Hamel problem is that when a > ac, inertia forces are of dominant 
importance throughout the flow field no matter how small the source Reynolds 
number 2Q/v may be. 

1. Introduction 

ordinates Oxyz with Oz parallel to the flow, the equation for the velocity w(x, Y) is 
Consider Poiseuille flow along a straight duct of cross-section 9. Choosing CO- 

Vaw = -G/p in 9, (1.1) 

where G is the applied pressure gradient, and ,u the viscosity of the fluid. The boundary 
condition is 

W =  0 on a 9 .  (1.2) 

If the boundary 8 9  has any sharp corners (as is the case if, for example, it has 
square or trianguIar cross-section), then it is very natural to enquire into the nature 
of the solution of the problem (1. l ) ,  (1.2) near the corner. Choosing polar co-ordinates 
(T,  0 )  with origin at the corner and with B = 0 along the bisector of the angle, so that 
IocalIy the boundary consists of the two planes B = 2 a (figure l ) ,  one might reasonably 
conjecture that w must have a local similarity form depending only on T ,  8, Glp and 
a (i.e. independent of the 'remote' geometry of the duct). If this is so, then on 
dimensional grounds, 

w - (G/,u)r*f(lf(e) (1.3) 
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W 
V’ w = - GIp 0 = o  

e = - a  

FIGURE 1. Poiseuille flow along duct whose cross-section 9 has a corner of angle 2a. 

(the dependence on a being implicit), and the only possible form of f(t9) compatible 
with (1.1) and (1.2) is 

This solution ‘explodes’ when 2 a  = in (and also when 2 a  = QT), and this leads one 
to question the validity of the above c0njecture.t It is physically clear that the 
solution must remain finite when 201 = +T, and that the similarity form (1.3) cannot 
therefore be correct for this angle. The difficulty is in fact quite an elementary one, 
and we shall resolve it in Q 2. 

A similar difficulty, which may be described as an inapplicability of a local similarity 
solution, can however arise in more complex physical contexts, when the means of 
resolution of the problem may not be so readily apparent. A second example, which 
we shall treat in $0 3-5, is the following. Suppose that viscous fluid is contained in the 
space 181 < a between two planes 0 = f a which are hinged a t  their intersection (so 
that the angle a may be varied), and suppose that the normal velocity is instan- 
taneously prescribed on the planes, by rotating the planes about 0 as indicated in 
figure 2(a ) ,  as 

u,= T r w  on t 9 =  +u. (1.5) 

t A similar breakdown was noted by Fraenkel (1961) in the context of inviscid corner flow 
with constant vorticity; Fraenkel correctly resolved the behaviour when 2a = t l~,  but, by limiting 
attention to acute angles, the inapplicability of the similarity solution for 2 a  > (see 2 below) 
was not explicitly appreciated. 

The problem has been touched on in a number of other studies, but the particular difficulty 
discussed here does not appear to  have been explicitly recognized. For example, Collins & Dennis 
(1976) study flow along a curved duct of triangular cross-section, and they consider particularly 
the case of a right-angled triangle. They state that the solution of (1.1) is O(r*) near r = 0‘ regard- 
less of the angle of the corner’, but, as suggested by (1.4), and as demonstrated in $ 2  below, this ie 
not true when 2a 3 IJ~T (although the subsequent argument of Collins & Dennis remains sub- 
stantially unaffected). 

A second example is provided by the work of Allen & Biggin ( 1974) who studied the flow of 8 

liquid filament down an inclined plane, the shape of the free surface being controlled by surface 
tension and the contact angle at the 3-phase contact line. When this contact angle is a, a l o d  
analysis using a zero stress condition on the free surface 8 = 0 and a no-slip condition on thesolid 
boundary 0 = a again yields (1.4), which breaks down when a = an. Allen & Biggin in fact chose 
a = &H in their numerical computation of the velocity distribution over the cross-section of the 
filament; A k i t e  element procedure provided an apparently well-behaved solution. It was in fmt 
through attempting to understand the structure of this solution that we were led to investigate 
the paradox presented by (1.4) when a = in. 
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FIGURE 2. (a)  The hinged plate problem, w 2 / u  -g 1. 
(b)  The Jeffery-Hamel problem, &/Y -g 1. 

Sufficiently near 0, inertia is clearly negligible, and the stream funct'ion $(r,O) 
satisfies the biharmonic equation 

and the boundary conditions 
v%) = 0 (1.6) 

Again it is tempting to seek a similarity solution for 
a;  on dimensional grounds this must have the form 

depending only on (L) ,  r ,  8 and 

@ = &W@, (1.8) 

and the unique functionf(8) compatible with (1.6) and (1.7) (Moffatt 19G4a) is 

sin 28 - 28 cos 2a 
f (e) = sin 2a - 2a cos 2a 

This solution explodes when tan 2a = 2a, i.e. when 2a = 257.45". For this critical 
angle, f (0) apparently becomes infinite for all 181 < a, and the corresponding relocity 
components derived from (1.8) become infinite also. The assertion that the Reynolds 
number is low near the corner therefore requires re-examination, as does the relevance 
of a similarity solution of the form (1.8). 

A closely related difficulty has been noted (Fraenkel 1962) in the contest of the 
low Reynolds number limit of the Jeffery-Hamel problem (Batchelor 1 9G7, 55.G). 
Suppose that the planes 8 = ct are fixed and that fluid is introduced at  a volume rate 
2& (per unit length) a t  the intersection (figure 2 b ) ;  in this case, the low R,eynolds 
number limit of the Jeffery-Hamel stream function (~vhich provides an exact' solution 
of the Navier-Stokes equations) is 

sin 20 - 28 cos 2a ' = Q sin 2a - 201 cos 2a 7 

(1.10) 

with precisely the same angular dependence as (1.8) and the same pathological 
behaviour at 201 z 257" 
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(a) ( b )  

FIQURE 3. The seotor geometry aonsidered in 0 2. 

The same type of difficulty has been encountered and reaolved in an entirely 
differeat physical context by Sternberg & Koiter (1958). When an elastic wedge is 
subjected to a couple that is concentrated a t  the vertex, the displacement field (which 
may be derived from a function satisfying the biharmonio equation) involves the 
same factor (sin 2 a  - 2 a  cos 2a)-1 which blows up a t  2oc x 257". Sternberg & Koiter 
resolved this apparently paradoxical behaviour by spreading out the force Aeld 
providing the couple over a small neighbourhood of the vertex and solving the resulting 
problem exactly. We shall follow a similar procedure in the fluid context in $83-5, 
and shall in this way provide a simultaneous resolution of the hinged plate and Jeffery- 
Hamel paradoxes, 

2, The Poiseuille problem at a sharp corner 
Consider the problem defined by (I. 1) and (1 .2) when 9 ( = a,) is the domain bounded 

by the lines 8 = a and the circular arc r = a. We may coneider the full range of anglea 
0 < 2 a  Q 2n, the limiting case 2a  = 2n representing a circular pipe with a radial 
' flange ' (figure 3). 

Suppose first that 2a =+ &w or jn. Then the general solution of (1.1) symmetric 
about 8 = 0 and satisfying w = 0 on 8 = 5 a is 

where 

w = (ee- 1) + AnrAn0osA,8, 
4p cos2a n= 0 

A,a = 4 ( 2 n +  l)n, n = 0 , 1 , 2 ,  ... . 
The coefficients A, are determined by the condition w = 0 on T = a (181 < a); using 
the orthogonality 

we find 

condition 
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Now A, = n / 2 a ,  so that A, >< 2 according as 201 5 an. Hence the particular integral 

is the dominant part of the solution (2 .1)  near P = 0 only if 2u < in. If 201 > an, the 
solution is dominated near r = 0 by the leading term of the series of eigenfunctions, 

The particular value of the coefficient A ,  depends on the 'global' geometry of 9, and 
so the asymptotic form (2 .6)  cannot be obtained from purely local considerations. 

When 2 a  > #n, A, and A, are both less than 2, and so the first two terms of the 
series in (2 .1 )  both dominate over w,(r, 8) for amall r .  In the extreme caBe 2a = 2n 

The cases 2u = in and #n require special attention. If we let 201 = in+€ in the 
expression (2.1), we find 

so that, in the limit t.+O (i.e. 2u = in), 

w = -- Gr2 [z+(logk) n 
nP 

2a Leading terms in expansion of u' near r = 0 

0 c 2a < in 
2a = )n 
+T c 2a c 8n 
2a = #n 

< 2a c 2n 

ra, then rn/*a 

ra log T ,  then TI ,  then r@ 
rfl18a, then rB, then rgn/za 
d, then r1 log T ,  then ra,  then r'.9 
rnl2=, then ranlaa, then r8,  then r6fIa4 

TABLE t 

A similar treatment of the neighbourhood of 2a = 3;. shows that, when 2 a  = Qn, 

1 w = -? 3np ["-bog;) 4 
c o s ~ + e s i n 2 8  

'cosQO+ 00 C A,rAncosA,8. (2 .9 )  

n=2 

In this case, the singularity in wo(r,8) is compensated by an equal and opposite 
singularity in the second term (n = 1) of the series in (2 .1) .  

The above results concerning the leading terms in the asymptotic expansion of 
w(r, 8 )  near r = 0 are summarized in table 1.  

As noted in the footnote on p. 300, the same type of mathematical problem has 
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(C) 

FIUURE 4. Flow gnqerated in domain ga by rotation of bounding cylinder keeping 6, = a fixed: 
(a) assuming no separation; (b )  and (c), likely streamline patterns allowing for boundary-layer 
separation. 

been considered by Fraenkel (1961) in a different physical context. An example of 
the sort of situation envisaged by Fraenkel (who limited attention to acute angles 
201 < in) is indicated in figure 4( a) ,  which shows a method of generating a flow with 
closed streamlines in the domain gE, by rotation of the cylinder r = a with angular 
velocity Q, keeping the radiai boundaries 6 = f a fixed. If R = Qa2/v % 1, and if the 
$ow doe8 not separate from the boundary at any point, then the vorticity w is uniform 
throughout the care region (Batchelor 1956) - w = wo say - and the stream function 
$(T, 8)  is determined by 

V2$ = -wo in ga, $ = 0 on (2.10) 

The solution for $ is then precisely analogous to the solution for w(r, 0)  described 
above. The above proviso concerning non-separation is however physically un- 
realistic. If 2a < n, the flow will separate at  some point on 6 = a: where the pressure 
gradient impressed on the boundary layer is adverse (figure 4b)t; and if 2a > n, the 
flow will separate at the sharp vertex (figure 4c). In either case, the vorticity will take 
different constant values in different subdomains of ga separated by thin layers in 
which viscous forces are non-negligible; the specification (2.10) is then clearly in- 
applicable. 

t The secondary eddy so formed will then also presumably separate when R is sufficiently 
large; and indeed, when R + 00, the limiting steady solution presumably involves an infinite 
sequence of eddies, within each of which the vorticity takes a different constant value. 



305 

FIGURE 5. Modified Jeffery-Hamel problem treated in §s  3-5. The hinged plate problem is obtained 
in the limit a += co, and the conventional Jeffery-Hamel problem in the limit a + 0, w += m, 
Q = +oaa = constant. 

3. A modified Jeffery-Hamel problem 
Consider now the following modification of the Jeffery-Hamel problem (figure 5): 

suppose that viscous fluid is contained in the space 181 < a between the planes 8 = k a 
on which the radial velocity is zero and the normal velocity uo is specified as 

T w r  r < a ,  

r > a. 

The total flux introduced into the region 181 < a is then 

The ‘hinged plate ’ problem described in f 1 is obtained in the limit a+ 00, and the 
Jeffery-Hamel problem is obtained by the limiting process a+0, w+co, with Q 
constant. 

The stream function @(r, 8) satisfies the biharmonic equation 

v4* = 0 
and the boundary conditions 

(3.3) 

This problem may be solved by means of the Mellin transform (cf. Tranter 1948, 
Sternberg & Koiter 1958, who considered problems involving elastic wedges, and 
Moffatt 1964b in which a similar problem with specified tangential velocity on 0 = f a 
was treated). This is defined by 

with inverse relation 
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In ( 3 4 ,  p may be complex, its real part being such that the integral exists; clearly, 
provided 

where E > 0, the integral (3.5) will certainly exist in a neighbourhood of the line 
Rep = - 1 in the complex p planet. We shall find that c = - 1 is an appropriate 
choice for the real constant c in (3.6). The various operations that follow may all be 
justified under the conditions (3.7)’ which may be verified retrospectively. 

Under these conditions, equation (3.3) transforms to 

and the boundary conditions (3.4) transform to 

1 on 8 =  +a. (3.9) 

The (unique) solution of (3.8) and (3.9) is 

(3.10) 

W@) = (p+l)sin2a-sin2@+ 1)a. (3.11) 

(3.12) 

(3.13) 

~ a p + ~  COB ( p  + 2) a sin p0 cos pa sin (p + 2) 8 ~- 
P P + 2  

F(P,@ = w(p, [ 
where 

Note that 

end that 

It follows from (3.6) (with c 

w -P) = - Wp- 2) 

p( - p ,  8) = a-@-l)&p- 2,e). 

- 1) that 

w, 0) = ( + ) 2 + W / G  6) .  (3.14) 

It will therefore be sufficient in what follows to restrict attention to the ‘outer region’ 
T > a; the stream function in the inner region r < a may then immediately be inferred 
from (3.14). 

Substitution of (3.10) in (3.6) now gives 

] dp. (3.15) 
cospasin(p+2)19 - 

-l-ta, P + 2  

When r z a, this integral may be evaluated by closing the contour by a large semi- 
circle in the right-hand half-plane R s p  > - 1. The integrand has a removable singu- 
larity at p = - 1, and poles at the other zeros of the function W@). We therefore have 
to locate these zeros, and calculate the corresponding residues. Further progress 

t The condition of‘ zero forcing at infinity’ implicit in (3.1) may be relaxed somewhat without 
affeating the structure of the solution. In particular, if (3.1) is replaced by ue = ~ F ( T )  where 
F ( r )  = o(r-8) at a, o(r6) as r -0, then the same method of sQlution is applicable with very similar 
results. 
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Y 

+ 1) 

FIQURE 6 ( a ) .  For legend see next page. 

requires rather careful consideration of the function W ( p ) ,  which is analysed in the 
following section. 

4. Zeros of the function W(p), Re p > - 1 p 
Consider first the real zeros of W(p) .  Let p + 1 = 5/2a; then 

(4.1) 
sin 2a 

W =-m(a)E-sin& m(a) = - 2a ' 
and the real zeros of W ( p )  are given by the intersections of the straight line 
La: y = m(a) 6 and the sine curve S: y = sin 6. These intersections are illustrated 
in figure 6(a) €or various values of 2a. Note the following propert,ies which may be 
easily inferred from the diagram. 

E 2a (correspond- 
ing to p = 0). (This angle was incorrectly given as 156' in Moffatt 1964a; it is the 
angle below which corner eddies inevitably form in symmetric flow near the corner 
produced by some symmetric agitation at  some distance from the corner.) 

(ii) The angle 2a1 is the first of a sequence of angles {2a,} (2a, z 168O, 2a, x 172' 
and asymptotically 2a, - (4n + 1 )  ;rr2/[(4n + 1 )  7r + 21) for which La touches S. When 
a, < a < a,,,, there a.re 2n+ 1 real roots of W ( p )  = 0 with p > - 1 .  When a = u,, 
there are 2n such real roots, the largest being a double root. Obviously 2a,+n as 
n+a.  

(i) For 0 < 2a < 2a1 x 159", there is only one real root, namely 

(iii) There is a second similar sequence of angles, ( 2 4 )  say, in the range 

7r c 2a < 2011 x 198O, 

and a third similar sequence {Za;}, in the range 2 4  c 2or < 2 2 ~  (where 2aI x 328"). 

t The discussion of tliis section follows a standard pattern established by Haxdy (1902). 
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FIQTJRE 6. (a) The intersections of the straight line y = m(a) 5 and the sine curve y = sin 6 give 
the real zeros of W ( p ) .  (b)-(e) Solid curves are the family defined by (4.4) and deehed CUFV~E me 
the family defined by (4.5). The intersections marked 0 give the complex zeros of W ( p )  with 
t + i q  = 2a(p+ 1). Double zeros are indicated by 0. ( b )  2a = 135O; (c) 2a = 159'; (d) 2a = 168"; 
(e) 2a = 267". 

(iv) When 2a = 2ac w 257.45' there is a double root of W@) at p = 0 (6 = 2ac). 
(v) For 2a c 2ac, the smallest root of W@) is p = 0; for 2a > 2ac, however, the 

smallest root p1 satisfies 

(with equality only at 2a = 2n). 

- * < p r < O  ( 4 4  

Consider now the complex zeros of W@). Let 

and suppose that 9 + 0. Since W@*) = ( W@))*, the complex zeros occur in complex 
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FIGURE 7. Sketch of variation of the first few zeros of W ( p )  as functions of 2ci. Where t,he curves 
are solid, pn is real; where the curves are dashed, p n  is complex, and only the real part of p ,  is 
represented. 

conjugate pairs, and it will be sufficient to consider those in the first quadrant E > 0, 
7 > 0. The real and imaginary parts of the equation W ( p )  = 0 may be written 

sin5 sin2a -- - 
5 2 a c o s h ~ ’  

sin2a 7 --- - cost. 2a sinhT 

(4.41 

(4.5) 

For given a, equations (4.4) and (4.5) represent two families of curves in the (5, 7) 
plane, and the intersections give the complex roots of W ( p ) .  [The intersections of 
(4.4) with the real axis 7 = 0 give the real roots treated above.] These curves are 
sketched in figures 6 (b-e) for the four particular choices of the angle 2a represented 
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by the lines L, in figure 6 (a), From such curves, we may infer the following properties 
of the zeros of W@). 

(i) For 0 < 2 a  < 7r, in each strip Sari, where S, is defined by 

8, = {[;mn < E < (m+ l ) n ,  m = 1,2 ,  ...}, 

there are either two real zeros of W @ )  (as discussed above) or two complex conjugate 
zeros. We shall denote the two zeros in the strip S,, by pzn and p2n+l; if they are real 
then pen < p2n+l and if they are complex pen+l = p& (and we map adopt the con- 
vention Impzn > 0, Imp2n+l < 0). 

(n = 1 , 2 , 3 ,  . . .) there are either two real 
zeros of W ( p )  @2n+l, p'an+2) or two complex conjugate zeros (pzn+, = p&+l). In the 
strip Sl, there are always two real zeros (pl,p2;pl < p 2 )  which coalesce to form a 
double zero only for the critical angle 01 = a,. 

The behaviour of the roots pl, p, ,  p3,  . . . (or their real parts where they are complex) 
is indicated in figure 7, over the full range 0 < 2 a  < 27~.  Note the position of the 
critical angle 201, and the denumerable sets {2a,}, {2ak},  (201:) (with limit points n, 
7r, 27r respectively) on this figure. 

(ii) For 7r < 2 a  < 2n, in each strip 

5. Asymptotic behaviour of the stream function (3.15) 
We are now in a position to evaluate the integral (3.15). When r > a, the contour, 

closed by a large semicircle in the half-plane Rep > - 1, encloses all the poles p,, 
described in the previous section. Suppose first that a is such that all of these poles are 
simple (i.e. a${.,} u {a;} u {a:} u {a,}); then standard evaluation of (3.16) gives, for 
r > a, 

1 8  

1 COB (p,, + 2 )  a sinp, 0 cosp, a sin (pn + 2 )  8 - a Pn 
+(r, 0 )  = - waa 2 

n-1 P n + 2  
(6.1) 

OD (TI w@n)[ pn 
. I  

and in this formula, since the poles are simple, 

W'@,) = sin 2 a  - 2 a  COB 2(p, + 1 )  a + 0. (6.2) 

Note that the complex terms of the series (6.1) occur in complex conjugate pairs. Note 
further that, from (5.1), for r > a, 

since W(pn) = 0 and limp-lW(p) = W'(0). This provides a check for consistency with 

(3 .2) ,  since the total flux introduced through the boundaries is 

(8.4) 

P + O  

+(r, a) - +(r, -a )  = was = 2 9 .  

Equation (5 .1)  has the form 

wherefn(0) depends implicitly on a. The result (3.14) then gives the corresponding 
expansion 

(6.6) +(r,@) = wua n- 5 1 k ) ' s + ' f n ( ~ ) ,  r < a. 



For 2a < 2ac = 267*46’, p1 = 0 and 

where$(@ is as given by (1.9), and so (6.6) gives 

m, 0) + w e )  = w ( e )  for Y B a, 

i.e. the Jeffery-Hamel solution (1.10). Similarly (6.6) gives 

9 ( r , @  &sf(@, r 4 a, 

which is just the similarity solution given by (1.8). 
For 2a > 2a0, however, as noted in Q 4,  the smallest root pl lies in the range 

where now 

f l (e )  = ( W’@,))-l hi1 cos (pl + 2)  a sinpl e - (pl + 21-1 cosp, a sin (23, + 2)  el, 

31 1 

(6.7) 

(6.8) 

(6.9) 

(5.10) 

(6.11) 

(6.12) 

and clearly we do not recover the similarity solutions in this situation. The forms 
(5.10) and (5.11) do however satisfy the basic requirements (3.7),  sincep, > - 4 .  

In  the Jeffery-Hamel limit (a + 0, w + co, Q constant), (5.10) gives, for any fixed r, 

*(r, 0 )  - 2Q(r/a)-P1fi(e). (6.13) 

From this, we may constpct a local Reynolds number 

R - (&/v) (rM-1.  (6.14) 

Since p ,  < 0 when a > a,, it  would therefore appear that R 9 1 (in the limit a + 0,  Y 

fixed) no matter what the magnitude of the ~ource Reynolds number 2Q/v may be. 
Inertia forces are then of dominant importance for all r ,  and a low-Reynolds-number 
treatment of the Jeffery-Hamel problem for a > a, would appear to be quite un- 
tenable, no matter how small Q / v  may be. 

As mentioned in the introduction, the breakdown of the Jeffery-Hamel solution 
at a = ac (when R = 2Q/v+O) was noted by Frmnkel (1962) who also described a 
similar behaviour at finite R (see also Fraenkel 1973). From Fraenkel’s discussion, it 
emerges that there exists a domain 9: a < a,(R) in the a-R plane (with ac(0) x 129O), 
within which the Jeffery-Hamel stream function ll.,(O; z, R) is a continuous function 
of a, and that +bJ +- 00 (for all 0 )  as a f a,(R). It may be conjectured from the discussion 
of the present paper that when a > a,(R),  the Jeffery-Hamel solution is irrelevant, 
and that the flow for such angles must depend on the manner in which the Rource 
Q is distributed in the neighbourhood of the vertex, as well as on its net strength. 

Returning now to the low-Reynolds-number limit, when 2a = 2ac, as noted earlier, 
W has a double zero at p = 0, i.e. 

W ( 0 )  = sin 2a - 2a cos 2a = 0,  (5.16) 

and so the integrand in (3.15) has a double pole at p = 0. The leading term of the 
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asymptotic expansion of $ for r 
from (3.15),  is given by 

H .  K .  Ho&# and B. R. 

a comes from the residue at this double pole and, 

asinp8 cospa sin (I, + 2 )  8 
P + 2  

- 

(6.16) 

[which again satisfies $(r,a) = +a2, consistent with (3 .2)J.  Once again, as in the 
simpler problem treated in 9 2,  a term logarithmic in r appears when the angle 201 is 
critical. Here, the situation is closely analogous to that resolved in the elasticity 
context by Sternberg & Koiter (1958). For r 6 a, the correspondence (3.14) shows 
that$ - r210grasr+Owhena = ac. 

We now have the additional interesting complication that W ( p )  has a double zero 
[and so the integrand in (3 .15)  has a double pole] whenever a takes one of the special 
values (of which there is a countable infinity) for which La is tangent to S (see the 
discussion of $3).  For example, when 2a  = 2a,  w 159", there is a double pole at 
pa = p s  w 1.78 and the second and third terms of the expansion (4.1) have to be re- 
placed by 

- (5.17) 

giving a contribution proportional to (a/r)Pa log (a /r )  for r > a. This contribution is 
however dominated (when r > a)  by the leading term of (5.1), which is (5.8) (with 
2 a  = 159"). Similarly when a takes any of the special values a,, a;, a: for which La 
touches S, evaluation of the residue at the corresponding double pole, pm say, gives 
rise to a contribution to $ proportional to ( a / r ) p m  log ( a / r ) ;  this is, however, always 
dominated by the terms of the series (5.1) with n < m. 

- 2wa2 d a p cos ( p  + 2) a sinp8 cospa sin ( p  + 2 )  8 +-(-I W"(P2) dP r [ P P + 2  3),,* 

2a < 2a, z 2 5 7 O  2a = 2a, 2a > 2a, 
Hinged plate limit 

Jeffery-Hamel limit 

TABLE 2. Asymptotic dependence of $(r,  0) on r as r / a  -+ 0 and r / a  -+ 00 for the problem de- 
fined by (3.3) and (3.4). The exponents p, ,  p z  and p ,  are the roots of W ( p )  = 0 ordered so that 
- 1 < p1  < Rep ,  < Reps (figure 7) .  For 2a > 24,, - 4 c p 1  < 0. 

r/a + O  

r/a + CCI 

r2, then r p i + 2  

Yo, then r -h  

relog (a/?-), then r2, then r P S f 2  

log ( r / a ) ,  then ro, then r - p a  

r p 1 + 2 ,  then r2, then r P s f 2  

r-91, then 70, then r - p a  

The conclusions of the above analysis are summarized in table 2 ,  which shows the 
radial dependence of the leading terms in the asymptotic expansion of $(r, 8) for 
r/a+O and r/a-+oo for the problem defined by (3 .3 )  and (3 .4) .  It should perhaps be 
emphasized that we have assumed throughout that the boundary conditions and 
resulting flow fields are symmetric about 8 = 0. If antisymmetric ingredients are 
included, then the conclusions of table 2 require modification (see concluding footnote 
of Sternberg & Koiter 1958). The antisymmetric ingredients can be important in 
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certain circumstances, and in particular in some of the situations envisaged by Jeffrey 
& Sherwood (1 980). 

The 'explosion' in the solution (1.8) at 2a z 257' was originally drawn to our 
attention by Dr T. J. Pedley, whose provocative observation is gratefully acknow- 
ledged, as is a stimulating discussion of the phenomenon with Dr J. M. Rallison. The 
work is supported by S.R.C. Research Grant no. GRlAl5993.4. 
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